imgboxbg

News

关于轴承表面粗糙度的分析

  • 分类:新闻
  • 发布时间:2021-08-15 21:38
  • 访问量:

【概要描述】轴承在磨加工过程中,其工作表面是通过高速旋转的砂轮进行磨削的,因此在磨削时如果不按作业指导书进行操作和调整设备,就会在轴承工作表面出现种种粗糙度缺陷,以致影响轴承的整体质量。

关于轴承表面粗糙度的分析

【概要描述】轴承在磨加工过程中,其工作表面是通过高速旋转的砂轮进行磨削的,因此在磨削时如果不按作业指导书进行操作和调整设备,就会在轴承工作表面出现种种粗糙度缺陷,以致影响轴承的整体质量。

  • 分类:新闻
  • 发布时间:2021-08-15 21:38
  • 访问量:
详情

轴承在磨加工过程中,其工作表面是通过高速旋转的砂轮进行磨削的,因此在磨削时如果不按作业指导书进行操作和调整设备,就会在轴承工作表面出现种种粗糙度缺陷,以致影响轴承的整体质量。
轴承在精密磨削时,由于表面粗糙度要求很高工作表面出现的磨削痕迹往往能用肉眼观察到其表面磨削痕迹主要有以下几种。(检测粗糙度建议选用粗糙度仪)
表面出现交叉螺旋线痕迹
出现这种痕迹的原因主要是由于砂轮的母线平直性差,存在凹凸现象,在磨削时,砂轮与工件仅是部分接触,当工件或砂轮数次往返运动后,在工件表面就会再现交叉螺旋线且肉眼可以观察到。这些螺旋线的螺距与工件台速度、工件转速大小有关,同时也与砂轮轴心线和工作台导轨不平行有关。
螺旋线形成的主要原因
1.砂轮修整不良,边角未倒角,未使用冷却液进行修整;
2.工作台导轨导润滑油过多,致使工作台漂浮;
3.机床精度不好;
4.磨削压力过大等。
螺旋线形成的具体原因
1.V形导轨刚性不好,当磨削时砂轮产生偏移,只是砂轮边缘与工作表面接触;
2.修整吵轮时工作台换向速度不稳定,精度不高,使砂轮某一边缘修整略少;
3.工件本身刚性差;
4.砂轮上有破碎太剥落的砂粒和工件磨削下的铁屑积附在砂轮表面上,为此应将修整好的砂轮用冷却水冲洗或刷洗干净;
5.砂轮修整不好,有局部凸起等。
表面出现鱼鳞状
表面再现鱼鳞状痕迹的主要原因是由于砂轮的切削刃不够锋利,在磨削时发生“啃住”现象,此时振动较大造成工件。
表面出现鱼鳞状痕迹的具体原因是:
1. 砂轮表面有垃圾和油污物;
2. 砂轮未修整圆;
3. 砂轮变钝。修整不够锋利;
4. 金刚石紧固架不牢固,金刚石摇动或金刚石质量不好不尖锐;
5. 砂轮硬度不均匀等。
工作面拉毛
表面再现拉毛痕迹的主要原因是由于粗粒度磨粒脱落后,磨粒夹在工件与砂轮之间而造成。
工件表面在磨削时被拉毛的具体原因是:
1. 粗磨时遗留下来的痕迹,精磨时未磨掉;
2. 冷却液中粗磨粒与微小磨粒过滤不干净;
3. 粗粒度砂轮刚修整好时磨粒容易脱落;
4. 材料韧性有效期或砂轮太软;
5. 磨粒韧性与工件材料韧性配合不当等。
工件表面有直波形痕迹
我们将磨过的工件垂轴心线截一横断面并放大,可看到其周边近似于正弦波。使其中心沿轴心线无转动平移,正弦波周边的轨迹便是波形柱面,亦称这为多角形。
产生直波形的原因是砂轮相对工件的移动或者说砂轮对工件磨削的压力发生周期性变化而引起振动的原故。这种振动可能是强迫振动,也可能是自激振动,因此工件上的直波频往往不止一种。  
产生直波形痕迹的具体原因是:
1. 砂轮主轴间隙过大;
2. 砂轮硬度太高;
3. 砂轮静平衡不好或砂轮变钝;
4. 工件转速过高;
5. 横向亓刀太大
6. 砂轮主轴轴承磨损,配合间隙过大,产生径向跳动;
7. 砂轮压紧机构或工作台“爬行”等。
工件表面再现烧伤痕迹
工件表面在磨削过程中往往会烧伤,烧伤有几种类型,一是烧伤沿砂轮加工方向,呈暗黑色斑块;二是呈线条或断续线条状。
工件表面在磨加工过程中被烧伤有以下几种原因:
1. 砂轮太硬或粒度太细组织过密;
2. 进给量过大,切削液供应不足,散热条件差;
3. 工件转速过低,砂轮转速过快;
4. 砂轮振摆过大,因磨削深度不断发生变化而烧伤;
5. 砂轮修整不及时或修整不好;
6. 金刚石锐利,砂轮修整不好;
7. 工件粗磨时烧伤过深,精磨留量又太小,没有磨掉;
8. 工件夹紧力或吸力不足,在磨削力作用下,工件存在停转现象等。 
那么工件表面在磨削过程中如何知道是否烧务呢?这要通过定期酸洗即可检查出来。  
工件酸洗后,在表面湿润时,应立即在散光灯下目测检验,正常表面呈均匀暗灰色。如是软件点,就呈现云彩状暗黑色斑点,且周界不定整;如果脱碳,则呈现灰白或暗黑色花斑;如果磨加工裂纹,则裂纹呈龟裂状,如是烧伤,一是表面沿砂轮加工方向呈现暗黑色斑块,二是呈现线条或断续线条状。
如在磨加工过程中出现上述烧伤现象,及时分析原因,采取有效措施加以解决,杜绝批量烧伤。


表面粗糙度达不到要求
轴承零件的表面粗糙度均有标准和工艺要求,但在磨加工和超精过程中 ,因种种原因,往往达不到规定的要求。
造成工件表面粗糙度达不到要求的主要原因是:
1. 磨削速度过低,进给速度过快,进刀量过大,无进给磨削时间过短;
2. 工件转速过高或工件轴和砂轮轴振动过大;
3. 砂轮粒度太粗或过软;
4. 砂轮修整速度过快或修整机构间隙过大;
5. 修整砂轮的金刚石不锐利或质量不好;
6. 超精用油石质量不好,安装位置不正确;
7. 超精用煤油质量达不到要求;
8. 超精时间过短等。  

 

扫二维码用手机看

相关新闻

04-15

金属材料的硬度

硬度 是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。它是衡量材料软硬的指标。 按测试方法的不同,硬度分为三种类型。   ①划痕硬度。主要用于比较不同矿物的软硬程度,方法是选一根一端硬一端软的棒,将被测材料沿棒划过,根据出现划痕的位置确定被测材料的软硬。定性地说,硬物体划出的划痕长,软物体划出的划痕短。   ②压入硬度。主要用于金属材料,方法是用一定的载荷将规定的压头压入被测材料,以材料表面局部塑性变形的大小比较被测材料的软硬。由于压头、载荷以及载荷持续时间的不同,压入硬度有多种,主要是布氏硬度、洛氏硬度、维氏硬度和显微硬度等几种。   ③回跳硬度。主要用于金属材料,方法是使一特制的小锤从一定高度自由下落冲击被测材料的试样,并以试样在冲击过程中储存(继而释放)应变能的多少(通过小锤的回跳高度测定)确定材料的硬度。   金属材料常见到的布氏硬度、洛氏硬度和维氏硬度属于压入硬度,硬度值表示材料表面抵抗另一物体压入时所引起的塑性变形的能力;回跳法(肖氏、里氏)测量硬度,硬度值代表金属弹性变形功能的大小。     布氏硬度 Brinell Hardness 用直径D的淬火钢球或硬质合金球作压头,以相应的试验力F压入试件表面,经规定的保持时间后,卸除试验力,得到一直径为d的压痕。用试验力除以压痕表面积,所得值即为布氏硬度值,符号用HBS或HBW表示。 HBS和HBW的区别是压头的不同。HBS表示压头为淬硬钢球,用于测定布氏硬度值在450以下的材料,如软钢、灰铸铁和有色金属等。HBW表示压头为硬质合金,用于测定布氏硬度值在650以下的材料。       同样的试块,当其它试验条件完全相同的情况下,两种试验结果不同,HBW值往往大于HBS值,而且并无定量的规律所循。   2003年以后,我国已经等效采用国际标准,取消了钢球压头,全部采用硬质合金球头。因此HBS停止使用,全部用HBW表示布氏硬度符号。很多时候布氏硬度仅用HB表示,指的就是HBW。不过在文献论文中HBS仍时有所见。   布氏硬度测量法适用于铸铁、非铁合金、各种退火及调质的钢材,不宜测定太硬、太小、太薄和表面不允许有较大压痕的试样或工件。   洛氏硬度 Rockwell Hardness 用锥顶角为120°的金刚石圆锥或Ø1.588mm和Ø3.176mm淬火钢球作压头和载荷配合使用,在10kgf初载荷和60、100或150kgf力总载荷(即初载荷加主载荷)先后作用下压入试样,在总载荷作用后,以卸除主载荷而保留主载荷时的压入深度与初载荷作用下压入深度之差来表示硬度。 洛氏硬度试验采用三种试验力,三种压头,它们共有9种组合,对应于洛氏硬度的9个标尺。这9个标尺的应用涵盖了几乎所有常用的金属材料。常用的有HRA、HRB和HRC三种,其中HRC应用较广。   HRC标尺的使用范围是20~70HRC。当硬度值小于20HRC时,因为压头的圆锥部分压入太多,灵敏度下降,这时应改用HRB标尺;当试样硬度大于67HRC时,压头尖端承受的压力过大,金刚石容易损坏,压头寿命会大大缩短,因此一般应改用HRA标尺。     洛氏硬度试验操作简便、迅速、压痕小,可测试成品表面及较硬、较薄的工件。因压痕小,对于组织和硬度不均匀的材料,硬度值波动较大,准确性不如布氏硬度高。洛氏硬度用于测定钢铁、有色金属、硬质合金等的硬度。     维氏硬度  Vickers Hardness 维氏硬度测量原理与布氏硬度相似。采用相对面夹角为136°金刚石正四棱锥压头,以规定的试验力F压入材料的表面,保持规定时间后卸除试验力,用正四棱锥压痕单位表面积上所受的平均压力表示硬度值,标记符号为HV。       维氏硬度测量范围大,可测量硬度为10~1000HV范围的材料,压痕小,一般用来测量较薄的材料和渗碳、渗氮等表面硬化层。     里氏硬度 Leeb Hardness 用一定质量的装有碳化钨球头的冲击体,在一定力的作用下冲击试件表面,然后反弹。由于材料硬度不同,撞击后的反弹速度也不同。在冲击装置上安装有永磁材料,当冲击体上下运动时,其外围线圈便感应出与速度成正比的电磁信号,再通过电子线路转换成里氏硬度值,符号标记为HL。 里氏硬度仪无需工作台,其硬度传感器小如一只笔,可用手直接操作,无论是大、重型工件还是几何尺寸复杂的工件都能容易地检测。   里氏硬度另外一个优点是对产品表面损伤很轻,有时可作为无损检测;对各个方向,窄小空间及特殊部位硬度测试具有独特性。
04-15

美国施泰力HE400-SR221卧式投影仪运用于医疗行业

轮廓投影仪是针对小型精密部件、橡胶、电路板等行业所专用的非接触式测量设备。应用放大作用,可作长度、角度、形状、表面等检验工作。属非接触式、二次元量测,尤其适合弹性、脆性材料之量测。主要用于测量复杂形状工件,如成形刀具、样板、凸轮、仪表零件、电子元件的轮廓形状和表面尺寸等。
04-15

粗糙度仪

粗糙度仪又叫表面粗糙度仪、表面光洁度仪、表面粗糙度检测仪、粗糙度测量仪、粗糙度计、粗糙度测试仪等多种名称。它具有测量精度高、测量范围宽、操作简便、便于携带、工作稳定等特点,可以广泛应用于各种金属与非金属的加工表面的检测,该仪器是传感器主机一体化的袖珍式仪器,具有手持式特点,更适宜在生产现场使用。外形设计,坚固耐用,抗电磁干扰能力显著,符合当今设计新趋势。
04-15

海外采购仪器关注质量 低价“抢订单”难见效

直以来,生产成本相对低廉是大批中国出口企业赢取海外订单的重要优势。今年以来,随着海外需求趋于疲软,订单竞争日益激烈,通过降价提升竞争力成为不少出口企业的现实选择,不过,此间一些海外采购商在接受记者采访时表示,在选择供应商时,他们首要考虑的因素并不是价格,出口企业赢取订单并非“报价越低越好”。
08-15

显微维氏硬度计的应用

显微维氏硬度计由于具有负荷小、灵敏度高等特点,广泛地应用于生产和科研,对金属材料的测定,同时也可对非金属材料进行测定。不仅是工艺检验的手段,同时是金相组织研究和材料科学研究方面不可缺少的手段。
09-08

怎样使用直读光谱仪?

直读光谱仪,英文名为OES(Optical Emission Spectrometer),即原子发射光谱仪。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 随着20世纪80年代计算机技术和软件技术的发展,直读光谱仪发展迅速
上一页
1
2
 方圆量仪

微信

服务热线:

地址:苏州工业园区科成路6号3号楼101
邮编:215000

邮箱:sz@fy-jl.com

 

Copyright©2020 苏州市方圆计量仪器有限公司    ICP:苏ICP备2020055965号-1

客户留言